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• Executive Summary 
 

 

 

 

 

Long `Flutter Entertainment ( FLTR ) as yield a yield curve dropping 

beneficiary, this is a top down macro play incorporating modern machine 

learning techniques learned throughout the course.  

 

U.S rate cuts, increased liquidity and large amounts of institutional capital 

rotating into mid to low -beta globally diversified consumer plays. With 

FanDuel U.S expansion driving growth and European operations providing 

cash flow-stability. Flutter is positioned to absorb fed-induced liquidity 

flows.  Whilst remaining partially insulated from U.S geopolitical uncertainty.  

 

A dropping yield curve tends to unlock discretionary spending upside as the 

fed steps in to cut rates to fuel the economy.  
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Investment Objectives 
 
 

 

 

 

 

 

• Assess Flutter’s risk-adjusted expected return using the Capital Asset 

Pricing Model (CAPM). 

• Forecast future price movements using random forest regression and 

long short-term memory (LSTM) neural networks learned on the 

course.  

• Quantify corporate stability and credit risk using Altman Z-Score 

• Incorporate alternative data insights, such as options market implied 

volatility. 

• Single Stock Purchase, with the goal of generating a single return using 

various models, formulae learned on the course.  
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Market and Economic Outlook 
 
 
 

 
 
 

The yield curve is an important signal for financial markets, and my 

Ex-ante LSTM forecast suggest it is starting to drop sharply ( green 

line ). This means that the Federal Reserve’s policies, including 

liquidity injections, may begin to ease tight credit conditions to 

circumvent recessionary fears. While geopolitical risks remain, the 

overall economic environment seems to support a shift in 

investment toward assets that can benefit from increased capital 

flows If the fed reduces rates even further. ( DWS, 2024)  
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Beta 
Flutter Entertainment’s 0.79 beta vs. FTSE 100 suggests that 

its volatility is 79% of the broader UK market, making it a moderately 

sensitive asset in European and UK economic cycles. However, 

with 40% of revenue now from US operations, its S&P 500 beta of 

0.50 reflects a more defensive stance against US macro factors. 

Using a weighted approach: 

 

 
  

CAPM 4.04% 
BETA  0.67 
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Investment Selection & 
Analysis 

Flutter Entertainment PLC 
 

   

Flutter Entertainment plc, based in Dublin, Ireland, is a leading global 

company in sports betting and online gaming. It owns well-known 

brands like Paddy Power, Betfair, FanDuel, Sky Bet, and PokerStars, 

giving it a strong foothold in major markets such as the UK, Ireland, 

the US, Australia, and beyond. 

The company’s success is built on high-margin online gaming, 

digital betting, and entertainment, with a heavy focus on 

technology, data analytics, and customer engagement. One of its 

biggest growth areas is the US, where FanDuel has become a 

dominant force in online sports betting, benefiting from the 

loosening of gambling regulations. 

With a diverse range of brands and a strong competitive position, 

Flutter is a standout choice for this assignment. (Flutter, 2024) 
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1. Traditional Asset Pricing  

 

The CAPM-implied price of €265.98, based on a beta of 0.67, 

supports Flutter’s classification as a mid-beta consumer 

discretionary stock. This suggests the company offers a balance 

between stability and growth, especially as market liquidity 

conditions change. With the LSTM model predicting a steepening 

yield curve and the Fed expected to ease policy, the CAPM valuation 

provides a useful benchmark for where Flutter’s stock should trade 

under normal market conditions. 

However, CAPM does not fully account for shifts in liquidity. As bond 

yields fall and interest rate expectations change, institutional 

investors are likely to move capital into mid-beta discretionary 

stocks like Flutter. This could push its stock price higher than what 

traditional models suggest, showing how market trends can 

influence valuation beyond simple risk-return calculations. 
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Middle Ground 
 
 From a macro perspective, Flutter’s valuation and financial 

metrics appear to align with a lower-risk thesis when compared to 

more speculative names like DraftKings. Its relatively moderate P/E 

and EV/EBITDA ratios suggest that investors are pricing it as a 

stable, growing company rather than a high-risk, high-reward play. 

This makes Flutter less risky than firms that rely heavily on future 

growth without strong current earnings (like DraftKings), while still 

offering exposure to growth trends in online gaming and sports 

betting.  
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2. Machine Learning & Predictive Analytics 

While CAPM provides a risk-adjusted valuation of $265.98 (over 

three months with β=0.67), it is a static model that does not account 

for real-time market flows or liquidity-driven price adjustments. 

Given the LSTM forecast of a steepening yield curve and shifts in S&P 

and 10-year yields, the broader economic environment supports 

increased investment in mid-beta discretionary stocks like Flutter. 

Institutional investors seeking yield expansion and financial stability 

are likely to rotate capital into these sectors. However, since CAPM 

does not factor in these liquidity shifts, a more dynamic approach 

is needed, such as Random Forest regression. 

Unlike CAPM, which assumes a linear relationship between risk and 

return, Random Forest is a machine learning model that captures 

complex, non-linear interactions in market data. It works by building 

multiple decision trees and averaging their predictions, making it 

more flexible in responding to liquidity-driven changes. The 

Random Forest model projects an expected return of 8.08% for 

Flutter over the next three months, leading to an implied price of 

$279.34. This deviation from CAPM highlights the impact of shifting 
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liquidity conditions and increased discretionary spending. A feature 

importance analysis further supports this, showing that market 

returns (40.06%) and stock-specific price movements (60%) drive 

price action, while systematic beta (0.00%) plays no role. 

As the yield curve drops and expectations of rate cuts accelerate, 

institutional investors are likely to increase exposure to mid-to-low 

beta discretionary stocks. This reinforces Flutter’s position as a 

prime beneficiary of capital rotation. And they can also take 

advantage of that low rate window to fuel further expansion.  
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3. Risk & Volatility Analysis 

Skewness & Kurtosis  

 

 

 

Macro  Impact on Kurtosis Effects on FLTR 
Monetary Policy Fed and BoE Hikes/cuts 

Create volatility in 
equities 

High Debt exposure 
makes FLTR sensitive 

Regulatory Uncertainty Rule Changes in 
Gambling Laws 

U.K reforms / US 
Approvals could 
create massive swings 
in price 

Retail Retail traders amplify 
prices 

FanDuel in the US 
creates a more 
speculative 
environment 

Geopolitics ( Trump ) War, Sanctions, Oil Economic Uncertainty 
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Goldman Sachs (2024) points out that policy uncertainty plays a 

major role in shaping market trends. This is especially true for 

industries like online gambling, which are more affected by 

regulatory changes than other consumer discretionary sectors. This 

supports the idea that Flutter’s risks are not random but are part of 

the current investment landscape, where macroeconomic factors 

and government policies influence stock prices more than 

traditional risk measures. 

A clear example of this is how markets react to political decisions, 

such as the Trump administration’s trade policies. With tariffs being 

placed on Canada, Mexico, Europe, and China, uncertainty rises, 

causing shifts in capital flows and increased market volatility. This 

reinforces the view that companies like Flutter are directly impacted 

by changes in government policy, making their stock movements 

less predictable 
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Altman Z-Score 
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The chart quantitatively dissects the Altman Z-Score components, 

illustrating their relative contributions to a calculated value of 3.93. 

Each bar corresponds to a weighted input factor, offering a visual 

breakdown of the risk profile determinants. The score’s position 

above the 2.99 threshold reflects a robust credit health metric, 

underscoring a low-risk categorization.(FAJASY, 2024) 

Options sentiment 
Black-Scholes Model 
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Inputs into the model in python 

S = 245 

K = 180 

T = 30/365 

R = 60.91/100 

 

Output 

Theoretical price 66.65 / Market price =. 66.47 Mispricing = -0.18 

implied Vol: 60.91 
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Expected price in one month 202.65 to 288.41 Supporting my 3 

month upside move to 279. 

High implied volatility means there is some potential for large 

moves in the market here. The 1-month expected range of 201 to 289 

places my random forest price prediction of 279 well within reach. 

Institutional positioning suggests hedging for upside, there could be 

a potential price increase if implied volatility comes down.  

My overall thesis depends on macro conditions remaining good, 

institutions rotating capital amid the steep drop in the yield curve 

inversion and options market staying consistent with implied 

volatility. With the 0.18 price difference options traders aren’t likely 

to try and capture these inefficiencies.  
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Recommendation & 
Conclusion 
 

Flutter Entertainment’s outlook comes into focus through multiple 

layers of analysis. At the macro level, a drop in the yield curve could 

ignite looser monetary policy and set the stage for a stronger 

consumer discretionary sector. A weighted beta of 0.67 proves a 

balance between European cash flow stability and high-growth U.S. 

expansion via FanDuel. 

Financial metrics reinforce this positioning. An Altman Z-Score of 

3.93 indicates low financial risk, while CAPM suggests an expected 

return of 4.04%. Machine learning models, including Random Forest 

and LSTM, highlight how liquidity shifts and institutional positioning 

could drive repricing. Options data points to limited downside risk, 

with a likely trading range of 201 to 288, making 279 a reasonable 

upside target. 
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1-3 month time-Horizon 

 

Narrative: 

 Yield Curve drops ( Trump/Tariffs ) Recession fears, sticky 

inflation, global bond demand shift 

 Slow growth, corporate earnings decline, risk-off sentiment, 

failing confidence in the consumer market 

 Fed cuts to prevent capital outflows, capital rotations into 

equities emerge, improved consumer sentiment  

 Lower rates = capital rotation 

 Flutter share price moves with the market and Yields, 279 Price 

Target. As they can take advantage of that low rate window to further fuel 

FanDuel expansion.  

 

  Buy           Current Price 7/03/25: $247 

  Sell                                                     $279 

 Return/Upside Apr 14th.                                                      12.9% 

  Short  Defensive sectors, Banks/defensive    

sectors 
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Personal Reflection 
 

This assignment pushed me to think critically and engage with 

complex concepts in finance. In ways I hadn’t before. It was so 

challenging but incredibly fun. I was way outside my comfort zone 

trying to look at monetary policy, rate cuts, applying models I 

learned throughout the course. Spending time buried in yield curve 

inversions/narratives, capital relocation. And federal reserve policy 

was fascinating! I could take what I was learning in the module and 

apply them to a stock of my choice and try to develop a macro 

thesis that forced me to think in multiple levels. Incredibly grateful 

I chose this module.        
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References, Figures, Tables & 
Source Code. 
Yield Curve Forecasting 
 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import LSTM, Dense 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error, mean_absolute_error 
 
file_path = "/Users/brandongwp/desktop/daily-treasury-rates.csv" 
data = pd.read_csv(file_path) 
 

data['Date'] = pd.to_datetime(data['Date']) 
data.set_index('Date', inplace=True) 
 
1990 to 2024 
data = data[(data.index >= "1990-01-01") & (data.index <= "2024-12-31")] 
 

if '10Y-3M Spread' not in data.columns: 
    if '10 Yr' in data.columns and '3 Mo' in data.columns: 
        data['10Y-3M Spread'] = data['10 Yr'] - data['3 Mo'] 
    else: 
        raise ValueError("Required columns '10 Yr' and '3 Mo' are missing.") 
 
data.dropna(subset=['10Y-3M Spread'], inplace=True) 
data = data.sort_index() 
 
# Scale  
scaler = MinMaxScaler() 
yield_curve_scaled = scaler.fit_transform(data[['10Y-3M Spread']]) 
 

n_steps = 30 
X, y, dates = [], [], [] 
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if len(yield_curve_scaled) > n_steps: 
    for i in range(len(yield_curve_scaled) - n_steps): 
        X.append(yield_curve_scaled[i:i + n_steps]) 
        y.append(yield_curve_scaled[i + n_steps]) 
        dates.append(data.index[i + n_steps])   
else: 
    raise ValueError("Not enough data for LSTM sequence generation.") 
 
X, y = np.array(X), np.array(y) 
X = X.reshape((X.shape[0], X.shape[1], 1))  
 

split_index = int(len(X) * 0.8) 
X_train, X_test = X[:split_index], X[split_index:] 
y_train, y_test = y[:split_index], y[split_index:] 
test_dates = dates[split_index:]   
 
# Build LSTM model 
model = Sequential([ 
    LSTM(50, return_sequences=True, input_shape=(n_steps, 1)), 
    LSTM(50, return_sequences=False), 
    Dense(25, activation='relu'), 
    Dense(1) 
]) 
 
# Compile  
model.compile(optimizer='adam', loss='mean_squared_error') 
 
# Train model 
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, 
y_test)) 
 
# Ex-Post Predictions 
y_pred = model.predict(X_test) 
 
# Rescale predictions to original values 
y_pred_rescaled = scaler.inverse_transform(y_pred.reshape(-1, 1)) 
y_test_rescaled = scaler.inverse_transform(y_test.reshape(-1, 1)) 
 
# Compute Ex-Post Model Performance Metrics 
rmse = np.sqrt(mean_squared_error(y_test_rescaled, y_pred_rescaled)) 
mae = mean_absolute_error(y_test_rescaled, y_pred_rescaled) 
 
print(f" Ex-Post Model Evaluation:") 
print(f"RMSE: {rmse:.4f}") 
print(f"MAE: {mae:.4f}") 
 
# ------------------ Ex-Ante Forecasting: Predict Future Until April 14, 2024 -----
------------- 
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forecast_horizon = pd.date_range(start=test_dates[-1], periods=45, freq='D')  # Up 
to April 14, 2024 
future_predictions = [] 
 

future_input = X_test[-1].reshape(1, n_steps, 1) 
 

for _ in range(len(forecast_horizon)): 
    future_pred = model.predict(future_input)[0, 0]   
    future_predictions.append(future_pred) 
     
     
    future_input = np.roll(future_input, shift=-1, axis=1) 
    future_input[0, -1, 0] = future_pred 
 

future_predictions_rescaled = 
scaler.inverse_transform(np.array(future_predictions).reshape(-1, 1)) 
 

plt.figure(figsize=(12, 6)) 
 

plt.plot(test_dates, y_test_rescaled, label="Actual Spread") 
plt.plot(test_dates, y_pred_rescaled, label="Predicted Spread", linestyle="dashed", 
color='red') 
 

plt.plot(forecast_horizon, future_predictions_rescaled, label="Forecasted Spread 
(Ex-Ante)", linestyle="dotted", color='green') 
 
plt.legend() 
plt.xlabel("Date") 
plt.ylabel("10Y-3M Spread (%)") 
plt.title("Yield Curve Forecasting with LSTM (Ex-Post & Ex-Ante Predictions)") 
plt.grid() 
plt.xticks(rotation=45)   
plt.show() 
 
 
 

Beta/CAPM 
 
import pandas as pd 
import numpy as np 
import yfinance as yf 
import statsmodels.api as sm 
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import matplotlib.pyplot as plt 
import seaborn as sns 
 
# Step 1: Fetch historical data 
flutter_ticker = "FLTR.L"  Flutter Entertainment on LSE 
market_ticker = "^SPX"  # S&P 500  
 
start_date = "2010-01-01" 
end_date = "2025-01-01" 
 
flutter_data = yf.download(flutter_ticker, start=start_date, end=end_date) 
market_data = yf.download(market_ticker, start=start_date, end=end_date) 
 
Calculate daily returns 
flutter_data['Returns'] = flutter_data['Close'].pct_change() 
market_data['Market_Returns'] = market_data['Close'].pct_change() 
 
Drop NaN values 
capm_data = pd.merge(flutter_data[['Returns']], market_data[['Market_Returns']],  
                     left_index=True, right_index=True).dropna() 
 
Regression to Get Beta 
X = sm.add_constant(capm_data["Market_Returns"])  # Add intercept 
y = capm_data["Returns"] 
capm_model = sm.OLS(y, X).fit()  # Run Ordinary Least Squares Regression 
 
 Beta & Alpha 
alpha, beta = capm_model.params['const'], capm_model.params["Market_Returns"] 
 
print(f"CAPM Beta Calculation for Flutter Entertainment (FLTR.L)") 
print(f" Beta (β) vs S&P 500: {beta:.4f}") 
 
# Step 4: CAPM Expected Return Calculation 
#Fetch US 10-Year Treasury Yield (^TNX) for the Risk-Free Rate 
risk_free_data = yf.download("^TNX", start="2024-01-01", end="2025-01-01") 
 
# 
latest_risk_free_rate = float(risk_free_data["Close"].iloc[-1]) / 100  # Convert 
from percentage to decimal 
 
# Adjust Market Risk Premium (Assume 6-8% for S&P 500) 
market_return = capm_data['Market_Returns'].mean() * 252  # Annualized Market 
Return 
 
# Calculate Expected Return using CAPM Formula: 
# Expected Return = Risk-Free Rate + Beta * (Market Return - Risk-Free Rate) 
expected_return = latest_risk_free_rate + beta * (market_return - 
latest_risk_free_rate) 
 
print(f"CAPM Expected Return Calculation for Flutter Entertainment") 
print(f" Beta (β) vs S&P 500: {beta:.4f}") 
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print(f"Risk-Free Rate (US 10Y Treasury): {latest_risk_free_rate:.4%}") 
print(f"Market Return (S&P 500): {market_return:.2%}") 
print(f"📈 Expected Return (CAPM): {expected_return:.2%} (Annualized)") 
 
Regression Line & Scatterplot of Daily Returns 
plt.figure(figsize=(8,5)) 
plt.scatter(capm_data["Market_Returns"], capm_data["Returns"], alpha=0.5, 
label="Daily Returns") 
plt.plot(capm_data["Market_Returns"], capm_model.predict(X), color='red',  
         label=f"Regression Line (β={beta:.2f})") 
plt.xlabel("S&P 500 Daily Returns") 
plt.ylabel("Flutter Entertainment Daily Returns") 
plt.title("Flutter Beta Calculation vs. S&P 500") 
plt.legend() 
plt.grid(True) 
plt.show() 

 
 
 
 

CAPM/Random Forest 
Prediction 
 
 
 
 
 
 
 
import yfinance as yf 
import pandas as pd 
import numpy as np 
import statsmodels.api as sm 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
 
Historical Data (Using NYSE Listing and USD Data) 
stock_ticker = "FLUT"   # Flutter Entertainment (NYSE) 
market_ticker = "^GSPC"  # S&P 500 Index (USD) 
rf_ticker = "^TNX"       # 10-Year US Treasury Yield (Risk-Free Rate in USD) 
 
# Download Data 
stock_data = yf.download(stock_ticker, start="2010-01-01", end="2025-01-01") 
market_data = yf.download(market_ticker, start="2010-01-01", end="2025-01-01") 
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rf_data = yf.download(rf_ticker, start="2010-01-01", end="2025-01-01")  # Risk-free 
rate 
 
# Step 2: Calculate Returns 
stock_data['Stock_Returns'] = stock_data['Close'].pct_change() 
market_data['Market_Returns'] = market_data['Close'].pct_change() 
 
# Align Data 
data = pd.concat([stock_data['Stock_Returns'], market_data['Market_Returns']], 
axis=1).dropna() 
data.columns = ["Stock_Returns", "Market_Returns"] 
 
beta = 0.67  # Manually defined beta 
 
Expected Return using CAPM 
risk_free_rate = float(rf_data['Close'].mean() / 100)  # Convert from percentage 
market_return = float(data['Market_Returns'].mean() * 63)  # 3-month expected 
market return 
 
expected return using CAPM (3-month horizon) 
return_capm = risk_free_rate + beta * (market_return - risk_free_rate) 
expected_return_capm = float(expected_return_capm)  # Convert to scalar 
 
CAPM Expected Return 
print(f"Expected Return (CAPM, 3 months, β=0.67): {expected_return_capm:.2%}") 
 
Latest Stock Price (Convert to Scalar) Get a cup of tea and continue** 30 mins ( 
implied price after ) 
current_price = float(stock_data['Close'].iloc[-1]) 
 
# CAPM-Based Implied Price (3-month horizon) 
capm_implied_price = float(current_price * (1 + expected_return_capm)) 
print(f"CAPM-Based Implied Price (3 months, β=0.67): ${capm_implied_price:.2f}") 
 
3 
# random forest model 
data['Lagged_Market_Returns'] = data['Market_Returns'].shift(1) 
data['Lagged_Stock_Returns'] = data['Stock_Returns'].shift(1) 
data['Beta'] = beta  # Add Beta as a constant feature 
data = data.dropna() 
 
# Define target (stock returns) and features (market returns, lags, and beta) 
X = data[['Market_Returns', 'Lagged_Market_Returns', 'Lagged_Stock_Returns', 
'Beta']] 
y = data['Stock_Returns'] 
 
# Split data into training and test sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Train a Random Forest Regressor 
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rf_model = RandomForestRegressor(n_estimators=100, random_state=42) 
rf_model.fit(X_train, y_train) 
 
Predict Next Period’s Return (3-month horizon) 
predicted_return_rf = float(rf_model.predict(X_test).mean() * 63)  # Convert to 
scalar & 3-month prediction 
print(f"Expected Return (Random Forest, 3 months, β=0.67 included): 
{predicted_return_rf:.2%}") 
 
# Random Forest-Based Implied Price (3 months) 
rf_implied_price = float(current_price * (1 + predicted_return_rf)) 
print(f"Random Forest-Based Implied Price (3 months, β=0.67 included): 
${rf_implied_price:.2f}") 
 
Evaluate the Model 
y_pred = rf_model.predict(X_test) 
mse = mean_squared_error(y_test, y_pred) 
print(f"Mean Squared Error (Random Forest): {mse:.6f}") 
 
Feature Importance 
feature_importances = pd.DataFrame({ 
    'Feature': ['Market_Returns', 'Lagged_Market_Returns', 'Lagged_Stock_Returns', 
'Beta'], 
    'Importance': rf_model.feature_importances_ 
}).sort_values(by='Importance', ascending=False) 
 
print("\nFeature Importances (Random Forest):") 
print(feature_importances) 
 

 
 

Risk Management / Kurtosis 
 
import yfinance as yf 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import scipy.stats as stats 
 
Historical Data 
stock_ticker = "FLTR.L"   # Flutter Entertainment (LSE ticker) 
ftse_ticker = "^FTSE"     # FTSE 100 Index 
sp500_ticker = "^GSPC"    # S&P 500 Index 
 
# Download Data 
stock_data = yf.download(stock_ticker, start="2010-01-01", end="2025-01-01") 
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ftse_data = yf.download(ftse_ticker, start="2010-01-01", end="2025-01-01") 
sp500_data = yf.download(sp500_ticker, start="2010-01-01", end="2025-01-01") 
 
Calculate Returns 
stock_data['Stock_Returns'] = stock_data['Close'].pct_change() 
ftse_data['FTSE_Returns'] = ftse_data['Close'].pct_change() 
sp500_data['SP500_Returns'] = sp500_data['Close'].pct_change() 
 
# Drop NaN values 
returns_df = pd.concat([stock_data['Stock_Returns'], ftse_data['FTSE_Returns'], 
sp500_data['SP500_Returns']], axis=1).dropna() 
returns_df.columns = ["Flutter_Returns", "FTSE_Returns", "SP500_Returns"] 
 
Compute Kurtosis 
flutter_kurtosis = stats.kurtosis(returns_df['Flutter_Returns'], fisher=True) 
ftse_kurtosis = stats.kurtosis(returns_df['FTSE_Returns'], fisher=True) 
sp500_kurtosis = stats.kurtosis(returns_df['SP500_Returns'], fisher=True) 
 
print(f"Kurtosis of Flutter Entertainment: {flutter_kurtosis:.2f}") 
print(f"Kurtosis of FTSE 100: {ftse_kurtosis:.2f}") 
print(f"Kurtosis of S&P 500: {sp500_kurtosis:.2f}") 
Plot Histogram & Compare Distributions 
plt.figure(figsize=(8, 5)) 
 
# Flutter Entertainment 
plt.hist(returns_df['Flutter_Returns'], bins=50, alpha=0.6, color='blue', 
edgecolor='black', density=True, label="Flutter Entertainment") 
 
# FTSE 100 
plt.hist(returns_df['FTSE_Returns'], bins=50, alpha=0.6, color='green', 
edgecolor='black', density=True, label="FTSE 100") 
 
# S&P 500 
plt.hist(returns_df['SP500_Returns'], bins=50, alpha=0.6, color='red', 
edgecolor='black', density=True, label="S&P 500") 
 
# Add Labels & Title 
plt.xlabel("Daily Returns") 
plt.ylabel("Density") 
plt.title(f"Return Distributions: Flutter vs. FTSE vs. S&P 500\nFlutter Kurtosis: 
{flutter_kurtosis:.2f} | FTSE Kurtosis: {ftse_kurtosis:.2f} | S&P 500 Kurtosis: 
{sp500_kurtosis:.2f}") 
plt.legend() 
plt.grid(True) 
 
# Show plot 
plt.show() 
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Z-Score 
 
import matplotlib.pyplot as plt 
 
# Inputs 
current_assets = 24508 
total_liabilities = 13241 
retained_earnings = 9573 
ebit = 1129 
market_value_of_equity = 45790 
sales = 14708 
total_assets = 24508 
 
# Calculate Altman Z-Score components 
X1 = (current_assets - total_liabilities) / total_assets 
X2 = retained_earnings / total_assets 
X3 = ebit / total_assets 
X4 = market_value_of_equity / total_liabilities 
X5 = sales / total_assets 
 
Z = 1.2 * X1 + 1.4 * X2 + 3.3 * X3 + 0.6 * X4 + 1.0 * X5 
 
risk = "Low Risk (Safe)" if Z > 2.99 else "Moderate Risk (Gray Area)" if Z >= 1.81 
else "High Risk (Distress Zone)" 
 
 
labels = ['X1', 'X2', 'X3', 'X4', 'X5'] 
values = [1.2 * X1, 1.4 * X2, 3.3 * X3, 0.6 * X4, 1.0 * X5] 
goldman_colors = ['#004b87', '#99badd', '#657687', '#e6e9ec', '#b2c7d9'] 
 
plt.figure(figsize=(8, 6)) 
bars = plt.bar(labels, values, color=goldman_colors, alpha=0.8) 
plt.title('Altman Z-Score Components', fontsize=14, color='#004b87') 
plt.xlabel('Components', fontsize=12, color='#004b87') 
plt.ylabel('Weighted Value', fontsize=12, color='#004b87') 
plt.axhline(y=Z, color='gray', linestyle='--', label=f"Total Z-Score: {Z:.2f}") 
plt.legend(loc='upper left', frameon=False, fontsize=10, title_fontsize=12) 
 
# Add value labels 
for bar in bars: 
    yval = bar.get_height() 
    plt.text(bar.get_x() + bar.get_width()/2, yval, f"{yval:.2f}", ha='center', 
va='bottom', color='#004b87') 
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plt.tight_layout() 
plt.show() 
 

 
 
 
 
 
 
Relative Valuation 
 
 
import yfinance as yf 
import pandas as pd 
import matplotlib.pyplot as plt 
 
# List of tickers (example: Flutter Entertainment and some competitors) 
tickers = ['FLTR.L', 'PENN', 'DKNG', 'MGM']   
 
for ticker in tickers: 
    try: 
        stock = yf.Ticker(ticker) 
        info = stock.info 
        data[ticker] = { 
            'P/E': info.get('forwardPE'), 
            'EV/EBITDA': info.get('enterpriseToEbitda'), 
            'Price-to-Sales': info.get('priceToSalesTrailing12Months') 
        } 
    except Exception as e: 
        print(f"Could not fetch data for {ticker}: {e}") 
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valuation_df = pd.DataFrame(data).T 
valuation_df.index.name = 'Company' 
valuation_df.dropna(inplace=True) 
 
# Display the table 
print(valuation_df) 
 
 
Blue_colors = ['#004b87', '#99badd', '#657687', '#e6e9ec', '#b2c7d9'] 
 
plt.figure(figsize=(10, 6)) 
for column, color in zip(valuation_df.columns, blue_colors): 
    plt.bar( 
        valuation_df.index, valuation_df[column], alpha=0.8, label=column, 
color=color 
    ) 
 
plt.title('Relative Valuation Multiples', fontsize=14, color='#004b87') 
plt.xlabel('Company', fontsize=12, color='#004b87') 
plt.ylabel('Valuation Multiples', fontsize=12, color='#004b87') 
plt.xticks(rotation=45, fontsize=10, color='#657687') 
plt.legend(title="Metrics", title_fontsize=10, frameon=False) 
 
plt.tight_layout() 
plt.show() 

 
 
Options and Implied Volatility 
Sourced: Trading View: 
https://www.tradingview.com/chart/?symbol=NYSE%3AFLUT 

 
from scipy.stats import norm 
import math 
 
def black_scholes(S, K, T, r, sigma, option_type="call"): 
    """ 
    Calculate Black-Scholes option price. 
 
    Parameters: 
    - S: Current stock price 
    - K: Strike price 
    - T: Time to expiration (in years) 
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    - r: Risk-free interest rate (annualized, decimal form) 
    - sigma: Volatility of the stock (annualized, decimal form) 
    - option_type: "call" or "put" 
 
    Returns: 
    - Black-Scholes price of the option 
    """ 
    d1 = (math.log(S / K) + (r + 0.5 * sigma**2) * T) / (sigma * math.sqrt(T)) 
    d2 = d1 - sigma * math.sqrt(T) 
     
    if option_type.lower() == "call": 
        price = S * norm.cdf(d1) - K * math.exp(-r * T) * norm.cdf(d2) 
    elif option_type.lower() == "put": 
        price = K * math.exp(-r * T) * norm.cdf(-d2) - S * norm.cdf(-d1) 
    else: 
        raise ValueError("Invalid option_type. Use 'call' or 'put'.") 
     
    return price 
 
def evaluate_option_mispricing(S, K, T, r, market_price, sigma, 
option_type="call"): 
    """ 
    Evaluate potential mispricing of the option. 
     
    Parameters: 
    - S: Current stock price 
    - K: Strike price 
    - T: Time to expiration (in years) 
    - r: Risk-free interest rate (annualized, decimal form) 
    - market_price: Current market price of the option 
    - sigma: Implied volatility (converted from % to decimal) 
    - option_type: "call" or "put" 
 
    Returns: 
    - A dictionary containing theoretical price, market price, and mispricing. 
    """ 
    theoretical_price = black_scholes(S, K, T, r, sigma, option_type) 
    mispricing = market_price - theoretical_price 
 
    return { 
        "Theoretical Price": round(theoretical_price, 2), 
        "Market Price": market_price, 
        "Mispricing": round(mispricing, 2), 
        "Implied Volatility": sigma 
    } 
 
# **Using Real Data from TradingView** 
S = 245.53     # Current stock price (from TradingView) 
K = 180        # Strike price (from TradingView) 
T = 30 / 365   # Time to expiration (approx. 1 month = 0.0822 years) 
r = 0.04       # Risk-free rate (assumed 4% annualized) 
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market_price = 66.47  # Observed market price of the call option 
sigma = 60.91 / 100   # Convert implied volatility from % to decimal 
 
# **Evaluate the Option Mispricing** 
result = evaluate_option_mispricing(S, K, T, r, market_price, sigma, 
option_type="call") 
print(result) 
 

import math 
 
S = 245.53  # Current stock price 
IV = 0.6091  # Implied volatility 
T = 30 / 365  # Time to expiration in years 
 
expected_move = S * IV * math.sqrt(T) 
upper_target = S + expected_move 
lower_target = S - expected_move 
 
print(f"Expected Price Range in 1 Month: ${lower_target:.2f} to 
${upper_target:.2f}") 
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Transparent AI Disclosure. 
AI-assisted tools were used to format and debug portions of the 

code to resolve persistent errors and improve readability ( fonts, 

structure). The core logic and implementation remain my own.  

 

• If an error message appeared in my terminal, I used AI tools to 

figure them out in conjunction with stack overflow.  

• After typing my code, I asked AI to format it properly so it can 

be read an interpreted easier.   
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